精品国产亚洲国产亚洲,久热中文在线观看精品视频,成人三级av黄色按摩,亚洲AV无码乱码国产麻豆

官方微信|手機版

產(chǎn)品展廳

產(chǎn)品求購企業(yè)資訊會展

發(fā)布詢價單

化工儀器網(wǎng)>產(chǎn)品展廳>光學儀器及設(shè)備>光學測量儀>光鑷(光學鑷子)>SENSOCELL光鑷 細胞組織力學特性定量測試分析光鑷

分享
舉報 評價

SENSOCELL光鑷 細胞組織力學特性定量測試分析光鑷

參考價 211
訂貨量 ≥1
具體成交價以合同協(xié)議為準

聯(lián)系方式:李勝亮查看聯(lián)系方式

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!


世聯(lián)博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯(lián)博研。世聯(lián)博研是一家集進口科研儀器代理銷售以及實驗技術(shù)服務(wù)于一體的技術(shù)公司。世聯(lián)博研專注生物力學和3D生物打印前沿科研設(shè)備代理銷售及科研實驗項目合作服務(wù),內(nèi)容涵蓋了血管力學生物學、生物力學建模仿真與應(yīng)用、細胞分子生物力學、組織修復(fù)生物力學、骨與關(guān)節(jié)生物力學、口腔力學生物學、眼耳鼻咽喉生物力學、康復(fù)工程生物力學、生物材料力學與仿生學、人體運動生物力學等生物力學研究以及生物材料打印、打印樣品生物力學性能測試分析的前沿領(lǐng)域科研利器和科研服務(wù)。

世聯(lián)博研的客戶范圍:
科研院所單位、生物醫(yī)學科研高校、醫(yī)院基礎(chǔ)科研單位等。

世聯(lián)博研公司代理的品牌具有:
1)近10年長期穩(wěn)定的貨源
2)以生物力學、細胞力學、細胞生物分子學、生物醫(yī)學組織工程、生物材料學為主,兼顧其他相關(guān)產(chǎn)品線
3)提供專業(yè)產(chǎn)品培訓(xùn)和銷售培訓(xùn)
4)良好的技術(shù)支持
5)已成交老客戶考證
6)每年新增的貨源。

細胞應(yīng)力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統(tǒng),PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統(tǒng)

產(chǎn)地類別 進口 價格區(qū)間 面議
應(yīng)用領(lǐng)域 醫(yī)療衛(wèi)生,生物產(chǎn)業(yè)

細胞組織力學特性定量測試分析系統(tǒng)

在活細胞或3D組織內(nèi)部執(zhí)行同時進行力測量和主動/被動微流變測試的256個光學陷阱實驗。同時捕獲256個目標分子或者粒子,浸沒式細胞或組織力學特性定量測量,無需校準。

基本功能概述
陷阱的產(chǎn)生和處理
免校準力測量
振蕩程序
功率譜采集
主動和被動微流變學

粒子操縱和力測量
光阱的產(chǎn)生
粒子操縱
免校準力測量

應(yīng)用概述:
細胞操作
細胞粘附力
細胞間相互作用
繩索牽引
細胞拉伸
主動和被動微流變學

Papers:

 

  • R. Meissner, N. Oliver and C.Denz. “Optical Force Sensing with Cylindrical Microcontainers“.Part. Part. Syst. Charact. 2018, 1800062.
  • F.Català, F. Marsà, M. Montes Usategui, A. Farré & E. Martín-Badosa. “Influence of experimental parameters on the laser heating of an optical trap“. Sci. Rep. 7, 16052; doi:10.1038/s41598-017-15904-6 (2017).
  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers” 15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at:bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



化工儀器網(wǎng)

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業(yè)已關(guān)閉在線交流功能

国模自慰一区二区三区-日韩一级黄色片天天看| 久久影视av一区二区-人妻激情乱偷一区二区三区| 少妇人妻无码久久久久久-综合图片亚洲网友自拍| 欧美黄色三级视频网站-国产九九热视频在线观看| 看肥婆女人黄色儿逼视频-秋霞电影一区二区三区四区| 国产免费一区二区三区不-日本少妇免费一区二区三区| 日本欧美在线视频观看-国产一区二区三区无码下载快播| 欧美三级韩国三级日本三斤-日本不卡一区不卡二区| 国产在线不卡高清一区-日本一区二区三区四区无卡| 国产精品久久99精品毛片-国产四季高清一区二区三区| 十九禁止观看无码视频-亚洲国产激情福利专区| 亚洲中文一二三av网-亚洲天堂成人免费在线| 亚洲精品在线观看一二三区-在线观看国产中文字幕视频| 日本少妇激情一区二区-亚洲自偷自拍熟女另类蜜臀| 亚洲永久免费在线观看-亚洲欧美导航一区二区导航| 午夜福利院免费在线观看-久久精品日产第一区二区三区画质| 欧美aa一级视频播放-久一一区二区三区大香蕉| 青木玲高清中文字幕在线看-视频在线免费观看你懂的| 亚洲av成人一区国产精品网-国产偷_久久一级精品a免费| av噜噜国产在线观看-欧美视频亚洲视频一区二区三区| 性都花花世界亚洲综合-日韩av一区二区三区| 午夜福利1区2区3区-午夜洗澡免费视频网站| 看肥婆女人黄色儿逼视频-秋霞电影一区二区三区四区| 亚洲av乱码一区二区-九九免费在线观看视频| 久久精品国产96精品-日韩人成理论午夜福利| 熟妇勾子乱一区二区三区-欧美爱爱视频一区二区| 国产人妻人伦精品日本-国产98超碰人人做人人爱| 国产亚洲欧美一区91-亚洲欧美一区二区在线| 丝袜美腿人妻连续中出-在线观看日韩三级视频| 精品少妇一区二区18-一区二区三区日韩在线播放| 国产精品一区二区欧美视频-国产一区二区三区天码| 天天干天天干2018-91人妻人人澡人爽精品| 哦啊好大用力欧美视频-麻豆国产传媒片在线观看| 日韩精品一区二区三区十八-日韩人妻少妇一区二区三区| 亚洲女人黄色录像一区-日韩av电影在线免费看| 韩漫一区二区在线观看-精品国产免费未成女一区二区三区| 久久精品亚洲国产av久-国产精品视频一区二区免费| 精品少妇一区二区18-一区二区三区日韩在线播放| 国产黄污网站在线观看-成人av电影中文字幕| 久久网址一区二区精品视频-日产国产欧美视频一区精品| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天|