精品国产亚洲国产亚洲,久热中文在线观看精品视频,成人三级av黄色按摩,亚洲AV无码乱码国产麻豆

官方微信|手機版

產(chǎn)品展廳

產(chǎn)品求購企業(yè)資訊會展

發(fā)布詢價單

化工儀器網(wǎng)>產(chǎn)品展廳>光學儀器及設(shè)備>光學測量儀>光鑷(光學鑷子)>SENSOCELL光鑷 細胞組織力學特性定量測試分析光鑷

分享
舉報 評價

SENSOCELL光鑷 細胞組織力學特性定量測試分析光鑷

參考價 211
訂貨量 ≥1
具體成交價以合同協(xié)議為準

聯(lián)系方式:李勝亮查看聯(lián)系方式

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!


世聯(lián)博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯(lián)博研。世聯(lián)博研是一家集進口科研儀器代理銷售以及實驗技術(shù)服務(wù)于一體的技術(shù)公司。世聯(lián)博研專注生物力學和3D生物打印前沿科研設(shè)備代理銷售及科研實驗項目合作服務(wù),內(nèi)容涵蓋了血管力學生物學、生物力學建模仿真與應(yīng)用、細胞分子生物力學、組織修復(fù)生物力學、骨與關(guān)節(jié)生物力學、口腔力學生物學、眼耳鼻咽喉生物力學、康復(fù)工程生物力學、生物材料力學與仿生學、人體運動生物力學等生物力學研究以及生物材料打印、打印樣品生物力學性能測試分析的前沿領(lǐng)域科研利器和科研服務(wù)。

世聯(lián)博研的客戶范圍:
科研院所單位、生物醫(yī)學科研高校、醫(yī)院基礎(chǔ)科研單位等。

世聯(lián)博研公司代理的品牌具有:
1)近10年長期穩(wěn)定的貨源
2)以生物力學、細胞力學、細胞生物分子學、生物醫(yī)學組織工程、生物材料學為主,兼顧其他相關(guān)產(chǎn)品線
3)提供專業(yè)產(chǎn)品培訓(xùn)和銷售培訓(xùn)
4)良好的技術(shù)支持
5)已成交老客戶考證
6)每年新增的貨源。

細胞應(yīng)力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統(tǒng),PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統(tǒng)

產(chǎn)地類別 進口 價格區(qū)間 面議
應(yīng)用領(lǐng)域 醫(yī)療衛(wèi)生,生物產(chǎn)業(yè)

細胞組織力學特性定量測試分析系統(tǒng)

在活細胞或3D組織內(nèi)部執(zhí)行同時進行力測量和主動/被動微流變測試的256個光學陷阱實驗。同時捕獲256個目標分子或者粒子,浸沒式細胞或組織力學特性定量測量,無需校準。

基本功能概述
陷阱的產(chǎn)生和處理
免校準力測量
振蕩程序
功率譜采集
主動和被動微流變學

粒子操縱和力測量
光阱的產(chǎn)生
粒子操縱
免校準力測量

應(yīng)用概述:
細胞操作
細胞粘附力
細胞間相互作用
繩索牽引
細胞拉伸
主動和被動微流變學

Papers:

 

  • R. Meissner, N. Oliver and C.Denz. “Optical Force Sensing with Cylindrical Microcontainers“.Part. Part. Syst. Charact. 2018, 1800062.
  • F.Català, F. Marsà, M. Montes Usategui, A. Farré & E. Martín-Badosa. “Influence of experimental parameters on the laser heating of an optical trap“. Sci. Rep. 7, 16052; doi:10.1038/s41598-017-15904-6 (2017).
  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers” 15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at:bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



化工儀器網(wǎng)

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業(yè)已關(guān)閉在線交流功能

午夜日韩精品在线视频-亚洲网老鸭窝男人的天堂| 成人免费黄色在线网站-日韩精品一区二区三区四区在线| 免费看黄色污污的网站-欧美一区二区三区爽爽| 激情字幕久久久字幕中文-一区二区三区免费黄片| 国产欧美日本一区二区-一区二区三区亚洲在线播放| 丝袜高跟熟女视频国产-熟女少妇亚洲一区二区| 狠狠狠狠爱精品一二三四区-l舌熟女av国产精品| 精品国产综合一区二区三区-蜜臀一区二区三区刺激视频| 日本高清二区视频久二区-大香蕉在线视频大香蕉在线视频| 亚洲国产精品一区二区av-日本一级黄色一区二区| 日韩精品人妻系列一区-亚洲女同性一区二区三区| 国内精产熟女自线一二三区-六月丁香婷婷在线观看| 国产老熟女激情小视频-成人一区二区人妻不卡视频| 亚洲综合av一区二区三区-高潮又爽又黄无遮挡激情视频| 天天干天天天天天天天-亚洲综合av在线三区| 久久影视av一区二区-人妻激情乱偷一区二区三区| 日韩欧美国产综合久久-国产精品一起草在线观看| 欧美伦乱淫老妇女激情吧-亚洲女邻居精品二区久久| 亚洲国产中文欧美一区二区三区-国产精品一区二区视频成人| 日本亚洲精品中字幕日产2020-很黄很黄的裸交视频网站| 男女做爰猛烈啪啪吃奶在线观看-人妻连裤丝袜中文字幕| 精品老熟妇一区二区三区-日韩丰满一区二区三区| 女主播啪啪大秀免费观看-精品99午夜福利影院| 国产传媒中文字幕在线观看-午夜福利视频在线播放观看| 日韩精品人妻系列一区-亚洲女同性一区二区三区| 91麻豆免费在线视频-欧美中文天堂在线观看| 黄片黄片在线免费观看-激情综合网激情五月俺也去| 免费av一区在线观看-国产精品视频高潮流白浆视频免费| 国产黄片在现免费观看-色老板最新在线播放一区二区三区| 黄片黄片在线免费观看-激情综合网激情五月俺也去| 亚洲视频一区二区三区免费-国产一级黄色大片在线| 亚洲av日韩五月天久热精品-国产日韩欧美一区二区三区群战| 久久免费观看归女高潮特黄-黄色av一本二本在线观看| 亚洲欧洲成视频免费观看-国产福利一区二区在线观看| 亚洲欧洲成视频免费观看-国产福利一区二区在线观看| 亚洲av成人一区国产精品网-国产偷_久久一级精品a免费| 国产欧美成人精品第一区-日本黄色精品一区二区| 黑丝av少妇精品久久久久久久-中文字幕久久久人妻无码| 男人的天堂久久精品激情-最新亚洲精品a国产播放| 黄色美女网站大全中文字幕-欧美韩国日本一区二区| 天天干天天天天天天天-亚洲综合av在线三区|