電子觸覺測試儀
- 公司名稱 上海玉研科學(xué)儀器有限公司
- 品牌
- 型號
- 產(chǎn)地
- 廠商性質(zhì) 生產(chǎn)廠家
- 更新時(shí)間 2024/10/11 11:12:19
- 訪問次數(shù) 4109
聯(lián)系方式:玉研儀器18502129044 查看聯(lián)系方式
聯(lián)系我們時(shí)請說明是化工儀器網(wǎng)上看到的信息,謝謝!
電子觸覺測試儀也叫做電子測痛儀,用于對大鼠、小鼠足部進(jìn)行輕觸,來測量老鼠的機(jī)械痛閾值或觸覺閾值。
老鼠感覺到爪子被刺激時(shí),會做出縮足反應(yīng)。電子觸覺測試儀使用測試探針對老鼠足底進(jìn)行觸覺刺激,力度由小到大逐漸增加力度,通過判斷老鼠的縮足反應(yīng),來采集和分析老鼠的觸覺閾值。
用于測試觸覺靈敏度的經(jīng)典儀器是Semmes-Weinstein纖毛機(jī)械刺激絲套裝。但是Semmes-Weinstein纖毛機(jī)械刺激絲的方法非常耗時(shí)耗力,一個測試實(shí)驗(yàn)需要使用多個不同纖維絲進(jìn)行多次和反復(fù)足底刺激。
電子觸覺測試儀可用來替代傳統(tǒng)的Semmes-Weinstein(Von Frey Hairs)纖毛機(jī)械刺激針,可直接測得動物的機(jī)械痛閾和觸覺閾測量,不需要進(jìn)行反復(fù)的測試和繁雜的計(jì)算。設(shè)備輕巧易用,測量精確。
電子觸覺測試儀相比傳統(tǒng)方法的優(yōu)勢特點(diǎn):
· 使用電子觸覺測試儀進(jìn)行一個測試實(shí)驗(yàn),只需要進(jìn)行一次足底刺激即可得到準(zhǔn)確的結(jié)果;
· 數(shù)據(jù)可直接用于統(tǒng)計(jì)分析,能夠節(jié)省很多的精力和時(shí)間;
· 測量精度高,測試力度能夠讀取到1000g以內(nèi)的具體數(shù)值,精度可達(dá)0.1g;
· 不需要進(jìn)行繁雜的統(tǒng)計(jì)和計(jì)算;
· 使用一個標(biāo)準(zhǔn)直徑的剛性探針進(jìn)行測試,能夠避免不同力度纖維絲具有不同的直徑而產(chǎn)生的觸覺誤差;
· 能夠避免因?yàn)榉磸?fù)多次的測試對動物耐受力的影響,減小測試誤差;
型號:38450
產(chǎn)品特點(diǎn):
· 測試探針被固定在測試手柄上,通過測試探針自下而上對老鼠足底的刺激,老鼠會在刺激達(dá)到耐受力度時(shí)抬腳躲避,此時(shí)可通過腳踏開關(guān)來判斷測試結(jié)果;
· 測試主機(jī)會顯示和記錄測試結(jié)果,包括測試力度和動物反應(yīng)時(shí)間;
· 實(shí)驗(yàn)人員可根據(jù)本次測試?yán)鲜蟮幕顒忧闆r,接受或者拒絕本次測試結(jié)果;
· 被接受的測試結(jié)果會記錄在主機(jī)中,可傳到電腦進(jìn)行統(tǒng)計(jì);
· 為了方便測試,測試手柄端部采用了棱鏡式設(shè)計(jì),方便進(jìn)行定位和瞄準(zhǔn);
· 設(shè)備中包含有助于穩(wěn)定探針加力速率的軟件工具;
主要參數(shù):
· 適用力度:1000g
· 分辨率:0.1g
· 自動記錄動物反應(yīng)
· 輔助用戶控制探針的加力速率
· 采用棱鏡設(shè)計(jì),有助于定位目標(biāo)
電子觸覺測試儀中使用的金屬探針與經(jīng)典的動態(tài)足底測試儀 Aesthe-siometer 37450 中使用的金屬探針相同,可以對兩種儀器的結(jié)果進(jìn)行一致性比較。
帶棱鏡式設(shè)計(jì)的手柄,在進(jìn)行“接觸式刺激”
大鼠和小鼠測試探針細(xì)節(jié)
小鼠測試探針細(xì)節(jié)
測試手柄的主要特色:
· 具備有效的峰值檢測器,自動捕捉和記錄測試過程中施加的力度值;
· 具備可靠的自動檢測動物反應(yīng)功能;
· 具備輔助穩(wěn)定探針加力速率的功能;
數(shù)據(jù)監(jiān)測和存儲:
· 測試主機(jī)具有存儲和查看功能;
· 可將數(shù)據(jù)導(dǎo)出到電腦進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和分析;
· 可導(dǎo)出Excel或文本格式;
軟件中可查看施加的力(紅線)、所需的目標(biāo)力率(藍(lán)線)和峰值檢測
基本配置:
帶棱鏡和刺激傳感器的測試手柄,測試主機(jī),腳踏板、軟件和USB電纜。
選配足底觸覺測試平臺:
測試支架
大鼠、小鼠測試籠
參考文獻(xiàn):
1.Chen, Yong, et al. "Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine." Gastroenterology 161.1 (2021): 301-317. doi:10.1053/j.gastro.2021.03.049
IF 33.88
2.Zhang, Run, et al. "Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain." Brain, Behavior, and Immunity 102 (2022): 23-39. doi:10.1016/j.bbi.2022.02.006
IF 19.23
3.Shlomy, Iftach, et al. "Restoring tactile sensation using a triboelectric nanogenerator." ACS nano 15.7 (2021): 11087-11098. doi:10.1021/acsnano.0c10141
IF 18.03
4.Jiang, Shan, et al. "Itch-specific neurons in the ventrolateral orbital cortex selectively modulate the itch processing." Science Advances 8.30 (2022): eabn4408. doi: 10.1126/sciadv.abn4408
IF 14.96
5.Zabala, Alazne, et al. "P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis." EMBO molecular medicine 10.8 (2018): e8743. doi:10.15252/emmm.201708743
IF 14.26
6.Velichkova, Atanaska N., Sophie E. Coleman, and Carole Torsney. "Postoperative pain facilitates rat C-fibre activity-dependent slowing and induces thermal hypersensitivity in a sex-dependent manner." British Journal of Anaesthesia 128.4 (2022): 718-733. doi:10.1016/j.bja.2021.10.053
IF 11.72
7.Zhang, Ting, et al. "Preemptive intrathecal administration of endomorphins relieves inflammatory pain in male mice via inhibition of p38 MAPK signaling and regulation of inflammatory cytokines." Journal of neuroinflammation 15 (2018): 1-14.
doi:10.1186/s12974-018-1358-3
IF 9.59
8.Joksimovic, Sonja L., et al. "Selective inhibition of CaV3. 2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain." Science signaling 11.545 (2018): eaao4425. doi: 10.1126/scisignal.aao4425
IF 9.52
9.Joksimovic, Sonja Lj, et al. "Novel neuroactive steroid with hypnotic and T‐type calcium channel blocking properties exerts effective analgesia in a rodent model of post‐surgical pain." British Journal of Pharmacology 177.8 (2020): 1735-1753. doi:10.1111/bph.14930
IF: 9.47
10.Zhang, Wenxin, et al. "Estrogen modulation of pain perception with a novel 17β-estradiol pretreatment regime in ovariectomized rats." Biology of sex Differences 11 (2020): 1-13. doi:10.1186/s13293-019-0271-5
IF 8.81
11.Weera, Marcus M., et al. "Generation of a CRF1-Cre transgenic rat and the role of central amygdala CRF1 cells in nociception and anxiety-like behavior." Elife 11 (2022): e67822. doi:10.7554/eLife.67822
IF 8.71
12.De Gregorio, Cristian, et al. "Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice." Stem Cell Research & Therapy 11 (2020): 1-21. doi:10.1186/s13287-020-01680-0
IF 8.08
13.Yang, Chun, et al. "Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain." Translational psychiatry 9.1 (2019): 57. doi:10.1038/s41398-019-0379-8
IF 7.99
14.D’Amico, Ramona, et al. "Hidrox® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain." Antioxidants 10.7 (2021): 1046. doi:10.3390/antiox10071046
IF 7.68
15.Tat, Quy L., et al. "Preemptive analgesic effect of intrathecal applications of neuroactive steroids in a rodent model of post-surgical pain: Evidence for the role of T-type calcium channels." Cells 9.12 (2020): 2674. doi:10.3390/cells9122674
IF 7.67
16.Bonifacino, Tiziana, et al. "Pharmacological Profile of MP-101, a Novel Non-racemic Mixture of R-and S-dimiracetam with Increased Potency in Rat Models of Cognition, Depression and Neuropathic Pain." Cells 11.24 (2022): 4027.doi:10.3390/cells11244027
IF 7.67
:,
:
yuyanbio
:yuyanbio