請輸入產(chǎn)品關鍵字:
郵編:510660
聯(lián)系人:楊永漢
電話:86-020-82574011
傳真:86-020-32206070
手機:13802525278
留言:發(fā)送留言
個性化:www.jianlun45.com
網(wǎng)址:www.jianlun.com
商鋪:http://www.muquzhou.cn/st199246/
EB病毒衣殼IgM免疫熒光玻片試劑盒
【產(chǎn)品簡介】
【詳細說明】
EB病毒衣殼IgM免疫熒光玻片試劑盒
EBV Viral Capsid IgM IFA Kit
廣州健侖生物科技有限公司
主要用途:用于檢測人血清中的EB病毒衣殼IgM抗體
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲病、立克次體、果氏巴貝西蟲、馬焦蟲、牛焦蟲、利什曼蟲、新包蟲、弓形蟲、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細小病毒等病原微生物的 IFA、MIF、ELISA試劑。
EB病毒衣殼IgM免疫熒光玻片試劑盒
我司還提供其它進口或國產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
JL-FL38 | parkeri立克次體IgG ELISA | R. parkeri IgG ELISA Kit |
JL-FL39 | montanensis立克次體IgG ELISA | R. montanensis IgG ELISA Kit |
JL-FL40 | EB病毒衣殼IgG免疫熒光玻片試劑盒 | EBV Viral Capsid IgG IFA Kit |
JL-FL41 | EBV Viral Capsid IgM IFA Kit | |
JL-FL42 | EB病毒早期抗原IgG免疫熒光玻片試劑盒 | EBV Early Antigens IgG IFA Kit |
JL-FL43 | 鉤端螺旋體IgG免疫熒光試劑盒 | Leptospira IgG IFA Kit |
JL-FL44 | 鉤端螺旋體IgM免疫熒光試劑盒 | Leptospira IgM IFA Kit |
JL-FL45 | 果氏巴貝西蟲免疫熒光玻片 | Babesia microti IFA Substrate slide |
JL-FL46 | 果氏巴貝西蟲IgG免疫熒光試劑盒 | Babesia microti IgG IFA Kit |
JL-FL47 | 果氏巴貝西蟲IgM免疫熒光試劑盒 | Babesia microti IgM IFA Kit |
JL-FL48 | 埃立克體IgG微量免疫熒光試劑盒 | Ehrlichia canis Canine IFA IgG Kit |
JL-FL49 | 包柔氏螺旋體菌IgG免疫熒光試劑盒 | Borrelia IgG IFA Kit |
JL-FL50 | 布魯氏菌IgG免疫熒光試劑盒 | Brucella IgG IFA Kit |
JL-FL51 | 里氏新立克次體IgG免疫熒光試劑盒 | Neorickettsia risticii IgG IFA Kit |
JL-FL52 | 弓形蟲IgG免疫熒光試劑盒(檢測貓) | Toxoplasma IFA Feline IgG Kit |
JL-FL53 | 弓形蟲IgG免疫熒光試劑盒(檢測狗) | Toxoplasma IFA Canine IgG Kit |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號二期2幢101-3室
【企業(yè)文化】
剛開始嘗試“培養(yǎng)”視網(wǎng)膜時,我們實驗室還在探討視網(wǎng)膜形成的一些基本問題。我們知道,視網(wǎng)膜是從胎兒大腦中名為“間腦”(diencephalon)的那一部分發(fā)育而來的。在胚胎發(fā)育的早期階段,間腦的一部分會擴展,形成氣球狀的視泡(optic vesicle),后者再向內(nèi)凹陷,形成視杯;視杯進一步形變,zui終成為視網(wǎng)膜。
一個多世紀以來,生物學家一直就視杯形成的精確機制爭論不休,直到今天,研究大腦發(fā)育的科學家仍然各執(zhí)一詞。其中一個較有爭議的問題是,在視杯形成過程中,與之相鄰的一些結構,如晶狀體和角膜起了什么作用?有些科學家認為,視網(wǎng)膜向內(nèi)凹陷,是因為受到了晶狀體的物理推動作用;也有科學家認為,視杯無須借助晶狀體的作用,就可以自己形成。
要想在活著的、正在發(fā)育中的動物身上觀察這一現(xiàn)象絕非易事,因此大約在10年前,我的研究團隊決定做一次嘗試,看能不能把眼睛的發(fā)育過程“提取”出來。
具體做法是,先在培養(yǎng)皿中培養(yǎng)胚胎干細胞,然后加入眼睛發(fā)育所需的化學物質,觀察培養(yǎng)皿中發(fā)生的情況。從發(fā)育程度上來說,胚胎干細胞是zui原始的干細胞,zui終可以分化成從神經(jīng)到肌肉的各種組織。
當時,把干細胞培育成器官的技術尚不存在。人們曾把相互分離的干細胞“撒”在膀胱或食管形狀的人工骨架上,試圖搭建出新的器官。這類組織工程學技術在培植真實器面并不是很成功。
因此,我們決定另辟蹊徑。在正式動手之前,我們做了一些準備工作。2000年,我們發(fā)明了一種細胞培養(yǎng)方法,可以把小鼠的胚胎干細胞轉變成多種神經(jīng)細胞。隨后,我們在培養(yǎng)皿中培養(yǎng)了一層小鼠胚胎干細胞,并加入一些可充當“傳遞員”的細胞——這些細胞會向胚胎干細胞傳遞化學信號,促使后者發(fā)育、分化,脫離胚胎狀態(tài)。我們培養(yǎng)這些細胞的目的,并不是要復制某個人體器官的三維結構,而是想看看,僅用細胞自身的化學信號,是否足以讓胚胎干細胞形成眼睛發(fā)育早期所*的神經(jīng)細胞。
At the beginning of trying to "c*te" the retina, our laboratory is still exploring some of the basic problems of retinal formation. We know that the retina develops from that part of the fetal brain called diencephalon. In the early stages of embryonic development, a portion of the diencephalon expands to form a balloon-shaped optic vesicle, which in turn sinks inwardly to form an optic cup; the optic cup further deforms to eventually become the retina.
For more than a century, biologists have been arguing for the exact mechanism by which cups are formed. Until today, scientists studying brain development remained silent. One of the more controversial issues is the role of adjacent structures such as the lens and cornea during optic cup formation. Some scientists believe that the retina is inwardly depressed because of the physical impetus of the lens Role; also some scientists believe that the cup without the help of the role of lens, you can form their own.
Observing this phenomenon on living, developing animals is by no means an easy task, so about 10 years ago my team decided to make an attempt to "extract" the development of the eye.
This is done by first culturing embryonic stem cells in a petri dish and then adding the chemicals needed for eye development to observe what is happening in the petri dish. In terms of development, embryonic stem cells are the most primitive stem cells that eventually differentiate into various tissues ranging from nerve to muscle.
At the time, the technology to grow stem cells into organs did not exist yet. People have "sprinkled" separated stem cells on the artificial skeleton of the bladder or esophagus in an effort to build new organs. Such tissue engineering techniques are not very successful in developing real organs.
Therefore, we decided to find another way. Before we started, we made some preparations. In 2000, we invented a cell culture method that transforms mouse embryonic stem cells into a variety of nerve cells. We then cultured a layer of mouse embryonic stem cells in a Petri dish and added cells that act as "transferees" - these cells send chemical signals to the embryonic stem cells that cause the latter to develop, differentiate, and detach themselves from the embryo. Instead of trying to copy the three-dimensional structure of a human organ, we want to see if the chemical signals of the cells alone are enough for embryonic stem cells to become neurons that are unique to early eye development.