精品国产亚洲国产亚洲,久热中文在线观看精品视频,成人三级av黄色按摩,亚洲AV无码乱码国产麻豆

您好, 歡迎來到化工儀器網(wǎng)

| 注冊| 產(chǎn)品展廳| 收藏該商鋪

18612271669

technology

首頁   >>   技術(shù)文章   >>   馬杰教授:MXene/真菌衍生碳類葡萄串結(jié)構(gòu)助力鈉離子電化學高效分離

瑞典百歐林科技有限公司

立即詢價

您提交后,專屬客服將第一時間為您服務

馬杰教授:MXene/真菌衍生碳類葡萄串結(jié)構(gòu)助力鈉離子電化學高效分離

閱讀:409      發(fā)布時間:2024-1-10
分享:

馬杰教授Mater. Horiz.MXene/真菌衍生碳類葡萄串結(jié)構(gòu)助力鈉離子電化學高效分離

 

文稿轉(zhuǎn)自能源學人                                               

文章題目截圖.png


作者:劉寧寧,袁建華通訊作者:馬杰

【研究背景】二維過渡金屬碳/氮化物(MXenes)由于其優(yōu)異的電子電導率(高達10000 S cm-1)、高比電容、親水性表面和良好的機械穩(wěn)定性,顯示出作為電化學離子捕獲電極的潛力。然而,由于強大的范德華力和氫鍵作用,MXenes薄片傾向于聚集或重新堆疊,這在很大程度上延長了離子傳遞途徑,減少了暴露的離子插入的有效活性位點。
在這種背景下,微觀結(jié)構(gòu)工程,特別是將二維MXenes片層轉(zhuǎn)化為三維多孔結(jié)構(gòu),對于緩解疊垛問題具有重要意義。三維MXenes多孔結(jié)構(gòu)不僅繼承了二維MXenes納米片的固有優(yōu)點,而且還反映了額外的優(yōu)勢:1)大的離子可達比表面將暴露出豐富的電化學活性位點,從而獲得高電化學電容;2)具有大量通道的相互連接的多孔結(jié)構(gòu)有利于電解質(zhì)擴散和離子/電子的快速傳遞。盡管合理的微觀結(jié)構(gòu)設計可以有效地緩解再堆積問題,但MXenes的結(jié)構(gòu)完整性和電化學活性仍然受制于表面氧化。由于大量的金屬原子暴露在表面,亞穩(wěn)定的MXenes傾向于在水環(huán)境中與H2OO2反應,生成更穩(wěn)定的金屬氧化物,其電導率更低,反應界面活性位點被鈍化。因此,需要更有效的治理策略來同時解決MXene的堆疊和穩(wěn)定性問題。
【工作介紹】近日,同濟大學/喀什大學馬杰教授團隊利用微觀形貌和異質(zhì)結(jié)構(gòu)構(gòu)建的雙重策略,合成了由真菌衍生的氮摻雜碳納米帶包裹的Ti3C2Tx MXene空心微球(GMNC),其呈現(xiàn)出special的三維類葡萄串結(jié)構(gòu)。首先,將二維Ti3C2Tx Mxene構(gòu)建成三維Mxene中空微球(MHM)結(jié)構(gòu),有效緩解了其納米片的聚集問題,且球形結(jié)構(gòu)可減緩Mxene的氧化動力學。此外,在MHM中引入氮摻雜的碳納米帶(N-CNRis)可以提供額外的活性位點,豐富的離子擴散通道和互連的導電網(wǎng)絡,以實現(xiàn)高效快速的離子存儲/電子傳輸。且具有納米帶狀結(jié)構(gòu)的N-CNRisTi3C2Tx  Mxene球纏繞在一起,可以減少Mxene與溶解氧/H2O的接觸,有利于提高Mxene的穩(wěn)定性??傊?,三維葡萄串狀異質(zhì)結(jié)構(gòu)的構(gòu)建呈現(xiàn)雙重協(xié)同效應,不僅增加了反應表面積,調(diào)節(jié)了電子分布,促進了整個動力學過程(包括離子和電子的傳遞),而且3D中空結(jié)構(gòu)設計減少了重復Na+ (de)插入時特定點的應力集中從而增強了Mxene的結(jié)構(gòu)穩(wěn)定性。3D GMNC異質(zhì)結(jié)構(gòu)具有優(yōu)異的CDI性能:1.6 V的外加電壓下可實現(xiàn)162.37 mg g-1NaClNa+捕獲能力,超快速的瞬時脫鹽速率(30.52 mg g-1 min-1),和超過100次循環(huán)的*循環(huán)穩(wěn)定性,優(yōu)于大多數(shù)MxeneCDI電極。通過電化學石英晶體微天平耗散監(jiān)測(EQCM-D)證明了Na+的可逆捕獲機理。密度泛函理論(DFT)計算進一步證明了異質(zhì)結(jié)構(gòu)構(gòu)建在調(diào)節(jié)寄主Na+吸附能中的作用。三維葡萄串異質(zhì)結(jié)構(gòu)的合理設計為Mxenes在電化學領域的高效應用提供了重要的見解。這一工作發(fā)表于RSC旗下高水平國際期刊Materials Horizons同濟大學博士生劉寧寧,袁建華為論文作者。
【內(nèi)容表述】

圖1.png

Figure 1. (a) Schematic illustration of the material preparation procedures. (b) TEM image of Ti3C2Tx Mxene sheet. (c) SEM image of PS microsphere (the inset: the size distribution of PS). SEM images of the (d) Ti3C2Tx Mxene@PS hybrid spheres, I biofungal ANR, (f) Ti3C2Tx Mxene@PS/ANR hybrids, and (g) GMNC (the inset: photograph of a bunch of grapes). TEM images of (h) MHM and (i) Ti3C2Tx Mxene layers. (j) Energy dispersive X-ray spectrometry mapping of Ti3C2Tx Mxene@PS. (k) Line scanning profiles of MHM.
如圖所示,采用犧牲模板法和生原位吸附法制備了GMNC。首先,用HClLiF任意蝕刻Ti3AlC2Al層,制備單層Ti3C2Tx MXene納米片,然后進行超聲剝離。Ti3C2Tx MXene膠體溶液依次與PS微球黑曲霉(Aspergillus niger, ANR)混合,形成MXene@PS/ANR復合物。經(jīng)MXene@PS/ANR退火處理后,最終得到GMNC。

圖2.png


Figure 2. (a) N2 adsorption–desorption isotherm of Ti3C2Tx MXene sheet, MHM, and GMNC. (b) Thermogravimetric analysis of PS, Ti3C2Tx MXene, MXene@PS, N-CNRis, and GMNC in air atmosphere. (c) XRD pattern of Ti3C2Tx MXene sheet, MHM, and GMNC. (d) Raman shifts of Ti3C2Tx MXene sheet, MHM, and GMNC. (e) FTIR spectroscopy of PS, ANR, Ti3C2Tx MXene sheet, MXene@PS, and GMNC. (f) XPS survey spectra of Ti3C2Tx MXene sheet, MHM, and GMNC. High-resolution XPS spectra of (g) N 1s, (h) Ti 2p, and (i) O 1s of GMNC.


MHM (157.81 m2 g-1)
GMNC (296.01 m2 g-1)SSAMXene薄片(17.56 m2 g-1)增加,說明三維中空微球的構(gòu)建通過減少接觸、削弱相鄰二維夾層之間的范德華力和氫鍵相互作用,有效地避免了MXene薄片的再堆積。大的SSA和分層分布將提供豐富活性位點,有利液體電解質(zhì)的浸入,在電化學離捕獲過程中加速離子的擴散。在ANRFTIR光譜中觀察到豐富的官能團(O-H, COO-,CONH-)。這些基團有助于Ti3C2Tx MXeneANR通過氫鍵結(jié)合,并保證了ANR基雜化物的*穩(wěn)定性。

圖3.png


Figure 3. (a) CV curves at 50 mV s-1of pure Ti3C2Tx MXene sheet, MHM, and GMNC. (b) CV curves of GMNC at various scan rates. (c) The specific capacitance of Ti3C2Tx MXene sheet, MHM, and GMNC at different scan rates. (d) Calculation of b-values based on CV curves of GMNC. (e) Quantification of the pseudocapacitive contribution of the CV of GMNC. The relationship between (f) 1/q? and v1/2, and between (g) q? and v?1/2. (h) Nyquist plots of Ti3C2Tx MXene sheet, MHM, and GMNC. (i) The cycling properties of GMNC at 10 A g?1 and inset presents the GCD curves of the 1st to 100th scan cycles.


MXene sheet, MHM
GMNC都表現(xiàn)出典型類電容的行為,沒有氧化還原過程,CV曲線的形狀保持類矩形,表明電容主要來自雙層電容偽電容,這與離子的可逆插/脫插有關。與純Ti3C2Tx MXene相比(Rct=17.95 Ω),GMNCMHM具有更小的Rct (GMNC12.62 Ω,MHM16.72 Ω),這進一步證明了三維中空結(jié)構(gòu)的設計和N-CNRis導電網(wǎng)絡的引入可以有效促進電子傳輸。此外,GMNC的孔隙連通性在偽電容器電極的速率能力中起著至關重要的作用,因為它可以容納與法拉第電荷存儲的快速動力學相關的體積變化。此外,GMNC還表現(xiàn)出*的循環(huán)穩(wěn)定性。

圖4.png


Figure 4. (a) The CDI device diagram. (b) SAC variations and (c) CDI Ragone plots of Ti3C2Tx MXene sheet, N-CNRis, MHM, and GMNC in 1000 mg L-1 NaCl concentration (1.2 V). (d) SAC of the Ti3C2Tx MXene sheet, N-CNRis, MHM, and GMNC at various operation voltages. (e) ENAS and corresponding SEC of GMNC under various applied voltages. (f) CDI cycling performances of GMNC and Ti3C2Tx MXene sheet in 1000 mg L-1 NaCl at 1.2 V. (g) Comparison of SAC, ASAR, and cycling performance with previously reported MXene-based CDI electrodes (information used for comparison in Table S2).


采用混合MCDI系統(tǒng)對制備的Ti3C2Tx MXene基材料的電化學脫鹽性能進行了全面研究Ti3C2Tx  MXene基材料作為Na+捕獲的陰,AC作為Cl-捕獲的陽極。60 min, 1.6 V的外加電壓下, GMNC可實現(xiàn)162.37 mg g-1NaClNa+捕獲能力,超快速的瞬時脫鹽速率(30.52 mg g-1 min-1),和超過100次循環(huán)的*循環(huán)穩(wěn)定性,優(yōu)于大多數(shù)MXeneCDI電極。

圖5.png


Figure 5. (a)Δf3/3 andΔD3 of GMNC versus time at various scan rates during the 2nd CV cycle tested via EQCM. (b) f3 and D3 responses of GMNC from EQCM-D during CV at the scan rate of 50 mV·s-1 in 0.01 M NaCl. Three cycles were performed. (c) The mass change of GMNC at the scan rate of 50 mV·s-1. (d) GMNC electrode mass versus charge passed during reduction at 50 mV·s-1 from EQCM-D. The blue region represents doping by Cl- expulsion and the yellow region underscores doping by Na+ uptake. Variation in the charge density of (e) Ti3C2Tx MXene sheet and (f) GMNC of Na+ surface adsorption. Simulated migration path and migration energy barrier of Na+ on the surface of (g) GMNC and (h) Ti3C2Tx MXene sheet.


原位EQCM-D表明,Na+通過水合鈉離子(Na+·4.89 H2O)的形式在MXene層中吸附/脫出,大于實際水化數(shù)(Na+·4.71 H2O),表明在GMNC的嵌Na過程中存在一定的水共插入。GMNC擴大的MXene層間距和高度開放的網(wǎng)絡有利于水合鈉離子的嵌入/脫出。DFT模擬結(jié)果表明,與MXene片材相比,GMNC異質(zhì)結(jié)構(gòu)表現(xiàn)出更大的熱力學傾向和更低的Na+吸附擴散勢,表明MXene與碳納米帶具有良好的協(xié)同作用。
【結(jié)論】綜上所述,本團隊成功地開發(fā)了一種用于在CDI中捕獲Na+的三維GMNC電極,該電極通過簡單模板法和生態(tài)友好的微生物輔助組裝策略,緩解了2D Ti3C2Tx MXene片的重新堆積和氧化問題。獲得的三維葡萄串狀異質(zhì)結(jié)構(gòu)產(chǎn)生了豐富Na+捕獲活性位點,而仿生納米纖維網(wǎng)絡結(jié)構(gòu)作為連續(xù)的導電主干,不僅為離子和電子的快速傳遞提供了豐富的通道,而且提高復合材料的結(jié)構(gòu)耐久性。本研究揭示了三維葡萄串異質(zhì)結(jié)構(gòu)高性能MXene基電極材料的應用前景。
Ningning Liu, Jianhua Yuan, Xiaochen Zhang, Yifan Ren, Fei Yu, Jie Ma, 3D grape string-like heterostructures enable high-efficiency sodium ion capture in Ti3C2Tx MXene/fungi-derived carbon nanoribbon hybrids, Mater. Horiz., 2024, DOI:10.1039/D3MH01028G

更多QSense 耗散型石英晶體微天平技術(shù)詳情,請點擊鏈接查看。


會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言
爆乳1把你榨干在线观看| 男人的下面进女人的下面在线观看| 欧美99热这里都是精品| 亚洲欧洲综合成人综合网| 夫妻性生活视频在线直播| 美国毛片亚洲社区成人看| 交换夫妇4中文字幕| 久久久久久高清无码视频| 国产高欧美性情一线在线| 色狠狠久久av北条麻妃| 中文字幕在线视频一区二区| 无码中文字幕免费一区二区三区| 亚欧日韩国产在线| 粗大长内射女人视频| 国产羞羞的视频在线观看| 啊灬啊别停灬用力啊男男在线观看| 性色av一区二区三区天美传媒四| 国产午夜福利视频第三区| 人人超级碰青青精品| 日本十八禁大骚逼| 亚洲一区二区三成人精品| 男女真人牲交高潮全过程| 成人 在线 欧美 日韩| 国产精品国产三级国| 午夜国产精品午夜福利网| 操大美女逼射精视频| 日韩乱码一区二区三区中文字幕| 久久国产高清波多野结衣| 日韩欧美一区二三区风间由美| 欧美一区二区三区四公司| 国产日韩一区二区三区在线播放| 久久精品国产自清天天线| 在线视频观看一区| 日韩精品人妻一区二区免费| 粗大长内射女人视频| 夫妻性生活在线免费视频| 大玩具猛插大bb| 国产91视频观看| 无码中文字幕免费一区二区三区| 91久国产在线观看| 国产精品538一区二区在线|