產地類別 | 國產 | 應用領域 | 化工,生物產業(yè),石油,地礦,電子/電池 |
---|
產品簡介
詳細介紹
全自動介質損耗測試儀
用途特點及性能:
用于現場抗干擾介損測量,或試驗室精密介損測量。儀器為一體化結構,內置介損電橋、變頻電源、試驗變壓器和標準電容器等。采用變頻抗干擾和傅立葉變換數字濾波技術,全自動智能化測量,強干擾下測量數據非常穩(wěn)定。測量結果由大屏幕液晶顯示,自帶微型打印機可打印輸出。
主要技術指標:
準確度: Cx: ±(讀數×1%+1pF)
tgδ: ±(讀數×1%+0.00040)
抗干擾指標:變頻抗干擾,在200%干擾下仍能達到上述準確度
電容量范圍: 內施高壓: 3pF~60000pF/10kV 60pF~1μF/0.5kV
外施高壓: 3pF~1.5μF/10kV 60pF~30μF/0.5kV
分辨率: zui高0.001pF,4位有效數字
tgδ范圍: 不限,分辨率0.001%,電容、電感、電阻三種試品自動識別。
試驗電流范圍:10μA~5A
內施高壓: 設定電壓范圍:0.5~10kV
zui大輸出電流:200mA
升降壓方式: 連續(xù)平滑調節(jié)
電壓精度: ±(1.5%×讀數+10V)
電壓分辨率: 1V
試驗頻率: 45、50、55、60、65Hz單頻
45/55Hz、55/65Hz、47.5/52.5Hz自動雙變頻
頻率精度: ±0.01Hz
外施高壓: 正接線時zui大試驗電流1A,工頻或變頻40-70Hz
反接線時zui大試驗電流10kV/1A,工頻或變頻40-70Hz
CVT自激法低壓輸出:輸出電壓3~50V,輸出電流3~30A
測量時間: 約40s,與測量方式有關
輸入電源: 180V~270VAC,50Hz/60Hz±1%,市電或發(fā)電機供電
計算機接口: 標準RS232接口
打印機: 煒煌A7熱敏微型打印機
環(huán)境溫度: -10℃~50℃
相對濕度: <90%
全自動介質損耗測試儀主要功能特點:
1 變頻抗干擾HD9000B全自動介質損耗測試儀
采用變頻抗干擾技術,在200%干擾下仍能準確測量,測試數據穩(wěn)定,適合在現場做抗干擾介損試驗。
2 高精度測量
采用數字波形分析和電橋自校準等技術,配合高精度三端標準電容器,實現高精度介損測量。
儀器所有量程輸入電阻低于2Ω,消除了測量電纜附加電容的影響。
3 多級安全保護,確保人身和設備安全
高壓保護:試品短路、擊穿或高壓電流波動,能以短路方式高速切斷輸出。
低壓保護:誤接380V、電源波動或突然斷電,啟動保護,不會引起過電壓。
接地保護:儀器接地不良使外殼帶危險電壓時,啟動接地保護。
C V T:高壓電壓和電流、低壓電壓和電流四個保護限,不會損壞設備;誤選菜單不會輸出激磁電壓。CVT測量時無10kV高壓輸出。
防誤操作:兩級電源開關;電壓、電流實時監(jiān)示;多次按鍵確認;接線端子高/低壓分明;緩速升壓,可迅速降壓,聲光報警。
防“容升”:測量大容量試品時會出現電壓抬高的“容升”效應,儀器能自動跟蹤輸出電壓,保持試驗電壓恒定。
抗震性能:儀器采用*抗震設計,可耐受強烈長途運輸震動、顛簸而不會損壞。
高壓電纜:為耐高壓絕緣導線,可拖地使用。
注意事項:
(1)測量中嚴禁拔下插頭,防止試品電流經HD9000B全自動介質損耗測試儀人體入地!
(2)用標準介損器(或標準電容器)檢測儀器正接線精度時,應使用全屏蔽插頭連接試品,否則暴露的芯線會引起誤差。
(3)應保證引線與試品低壓端0電阻連接,否則可能引起誤差或數據波動,也可能引起儀器保護。
(4)強干擾下拆除接線時,應在保持電纜接地狀態(tài)下斷開連接,以防感應。主要是由于水分浸入交聯聚乙烯絕緣,在電場作用下形成樹枝狀物。水樹枝的特點是引發(fā)樹枝的空隙含有水分,且在較低的場強下發(fā)生。水樹枝的產生,將會使介質損耗增加,絕緣電阻和擊穿電壓下降,電纜的壽命明顯縮短。目前國內外對水樹枝的生長研究尚不完善。一般認為,水樹枝的發(fā)展過程有以下幾種形式:
1)剩余應變使水樹枝增長。當電纜在外加電壓下,若絕緣中含有水分,導體附近的絕緣材料中剩余的應變就會增加,而應變較大的局部區(qū)域便會生成水樹枝。
2)電場下的化學作用發(fā)展了水樹枝。
3)電泳與擴散力的作用使水樹枝生長。介質電泳可以認為是不帶電荷的,但是已經極化的粒子或分子在畸變的電場中運動,若絕緣中含有帶水分的雜質,這些雜質會向導電線芯附近的高電場區(qū)聚集。這一區(qū)域的溫度相對偏高,水分因此而膨脹,形成較大的壓力,使間隙擴大,引起水樹枝的擴大和發(fā)展。
電樹枝往往在絕緣內部產生細微開裂,形成細小的通道,并在放電通道的管壁上產生放電后的碳化顆粒。水樹枝的產生,將會使介質損耗增加,絕緣電阻和擊穿電壓下降。因此,電纜中的電樹枝和水樹枝對電纜的電氣性能將會帶來嚴重的故障隱患。
2 電纜試驗
為了保證電纜安全可靠運行,有關的國際標準對電纜的各種試驗做了明確的規(guī)定。主要試驗項目包括:測量絕緣電阻、直流耐壓和泄漏電流。其中測量絕緣電阻主要是檢驗電纜絕緣是否老化、受潮以及耐壓試驗中暴露的絕緣缺陷。直流耐壓和泄漏電流試驗是同步進行的,其目的是發(fā)現絕緣中的缺陷。但是近年來國內外的試驗和運行經驗證明:直流耐壓試驗不能有效地發(fā)現交聯電纜中的絕緣缺陷,甚至造成電纜的絕緣隱患。德國Sechiswag公司在1978~1980年41個回路的10 kV電壓等級的XLPE電纜中,發(fā)生故障87次;瑞典的3 kV~24.5 kV電壓等級XLPE電纜投運超出9 000 km,發(fā)生故障107次,國內也曾多次發(fā)生電纜事故,相當數量的電纜故障是由于經常性的直流耐壓試驗產生的負面效應引起。因此,國內外有關部門廣泛推薦采用交流耐壓取代傳統(tǒng)的直流耐壓。
IEC62067/CD要求對于220 kV電壓等級以上的交聯電纜不允許直流耐壓。
研究表明,直流耐壓試驗時對絕緣的影響主要表現在:
1)電纜的局部絕緣氣隙部位由于游離產生的電荷在此形成電荷積累,降低局部電場強度,使這些缺陷難以發(fā)現。