電化學(xué)阻抗譜基礎(chǔ)
1 相關(guān)介紹
電化學(xué)阻抗譜是電分析化學(xué)中一門非常復(fù)雜的學(xué)科。本文旨在幫助大家理解EIS是什么,它是如何工作的,以及為什么EIS是一項強大的技術(shù)。為了理解電化學(xué)阻抗譜,我們將通過歐姆定律(公式1.1)從電阻的概念開始,其中是點(a)和點(b)之間的電壓,是在(a)和(b)之間流動的電流,圖1.1中的電阻象征性地表示是電阻,概念上表示電流流過電路的相反方向阻礙。越大,在給定電壓下流過電阻的電流就越小。
通過歐姆定律對電阻的描述特別適用于直流電(DC),即在電阻器上施加靜態(tài)電壓或電流。相反,阻抗是測量電路中與交流電流(AC)通過有關(guān)的電阻。在交流系統(tǒng)中,施加的信號不再是靜態(tài)的,而是在給定頻率下以正弦波的形式振蕩。阻抗方程類似于歐姆定律;但是,我們不使用表示電阻,而是使用表示阻抗(見公式1.2)。
阻抗與頻率相關(guān)的電壓和頻率相關(guān)的電流成正比,其中是振蕩正弦波的角頻率。阻抗的定義來自電路,因此電壓通常被用來定義阻抗。然而在電化學(xué)阻抗譜中,我們將從使用電壓切換到使用電位。電位是當電流從一個已知的參考點移動時單位電荷獲得或損失的能量。電壓表示兩點之間的電位差。例如在圖1.1中,點(a)相對于一個已知參考點(如地)的電位可能為+ 100v,點(b)相對于一個已知參考點(如地)的電位可能為+101 V。在這種情況下,(a)和(b)之間的電壓是+ 1v。在電化學(xué)系統(tǒng)中用參比電極作為穩(wěn)定的參比點,工作電極的電位是相對于參比電極電位來測量或施加的,因此好的參比電極也非常重要。這種做法也有例外,但總的來說在大多數(shù)電化學(xué)實驗中都使用電化學(xué)電位。在本文的其余部分中在描述EIS時將使用電位或電化學(xué)電位。
有了阻抗的概念理解,我們可以把電化學(xué)阻抗譜看作是一種電分析技術(shù)。在EIS實驗中,恒電位器(電化學(xué)工作站)向電化學(xué)系統(tǒng)施加正弦電位(或電流)信號,并記錄和分析產(chǎn)生的電流(或電位)信號(圖1.2)。
如果施加的信號是電位而被測量的信號是電流,它被稱為“恒電位EIS”。當施加的信號是電流而被測量的信號是電位時,它被稱為“恒流EIS”。對于恒電位EIS,施加電位的形式如式1.3所示
其中為潛在的正弦波振幅,為角頻率,為時間,項表示波形的相位。角頻率是衡量每單位時間內(nèi)信號振蕩的周期數(shù)。振幅是電位或電流信號大小的量度。用戶用恒電位器或頻率響應(yīng)分析儀(FRA)-電化學(xué)工作站控制輸入電位信號的頻率和幅度。被測量的輸出電流信號 (式1.4)與輸入信號具有相同的頻率,但其相位可能會發(fā)生位移稱為相移或相角。測量的輸出電流幅值將隨給定頻率下電化學(xué)系統(tǒng)的阻抗而變化。
一個完整的EIS實驗由一系列以電位設(shè)定值為中心的正弦電位信號組成。每個正弦信號的振幅保持不變,但輸入信號的頻率會變化。通常每個輸入信號的頻率在從~ 10khz - 1mhz到~ 10mhz - 1hz的對數(shù)尺度上等間隔遞減至頻率下限。對于每個輸入電位以給定的頻率測量相應(yīng)的輸出電流。
將輸入和輸出信號繪制在單個電流與電位圖上的結(jié)果稱為Lissajous圖(見圖1.5和圖1.6)。如果輸入和輸出信號同相或者=0,則電流與電位利薩若圖的形狀為一條直線(圖1.5)。如果輸入和輸出信號相異,Lissajous圖的形狀呈現(xiàn)為傾斜的橢圓形(圖1.6)。橢圓的寬度表示輸出信號相位角。例如,如果Lissajous圖看起來像一個完好的圓,這意味著輸出信號相對于輸入信號失相(即=±90°)。
原始圖為動圖-GIF
2 相關(guān)圖譜
一旦在恒電位器(電化學(xué)工作站)在每個頻率上收集電位與時間和電流與時間的數(shù)據(jù),對數(shù)據(jù)進行快速傅里葉變換(FFT)。FFT將電位電流與時間相關(guān)尺度測量轉(zhuǎn)換成電位幅度和電流幅度與頻率尺度相關(guān)測量
通過FFT分析確定每個頻率處的電位幅度、電流幅度和相位角。利用這些數(shù)據(jù),我們可以描述與EIS相關(guān)的不同繪圖約定。下面的描述簡化了數(shù)學(xué)但是要了解EIS的更詳細的數(shù)學(xué)描述,請查看我們的相關(guān)文章。
阻抗的幅值等于電位幅值除以電流幅值,如式2.1所示。
如果我們在雙軸圖上繪制阻抗的幅度和相角作為頻率的函數(shù),我們就得到了所謂的bode(圖2.2)。
如果我們在雙軸圖上繪制阻抗的幅度和相位角作為頻率的函數(shù),我們得到的結(jié)果是在bode圖中, vs 顯示在主垂直軸上,vs顯示在副垂直軸上。頻率和阻抗大小通常以對數(shù)標度繪制,而相位角則線性顯示。
還有另一種表達EIS數(shù)據(jù)的方法。使用極坐標,讓我們繪制作為從中心以相角相等的角度發(fā)出的射線(圖2.3)。
如果我們從極坐標移動到直角坐標,我們可以將阻抗大小分解為x和y分量(圖2.4)。
利用三角函數(shù)我們可以描述x軸的阻抗和y軸的阻抗(公式2.2和2.3)。
可以描述為和的向量和(式2.4)。
與x軸相關(guān)的阻抗稱為阻抗實部,,與y軸相關(guān)的阻抗稱為阻抗虛部。“實”和“虛”的標簽來源于對阻抗的更詳細的數(shù)學(xué)描述,超出了本文的范圍。對于那些對更高級的數(shù)學(xué)推導(dǎo)感興趣的人,請參閱我們的知識庫文章鏈接。
為簡單起見,我們只需考慮阻抗幅值的x軸分量為實阻抗,阻抗幅值的y軸分量為虛阻抗。如果我們在x軸上繪制阻抗實部,在y軸上繪制負阻抗虛部-,我們得到 Nyquist圖(圖2.5)。
Nyquist圖上的阻抗虛部值通常是反向的,如圖2.5所示。或者軸有時以相反的數(shù)字順序顯示,因為幾乎所有的值通常小于零,并且在笛卡爾圖上主要在第一象限查看形狀和圖案更方便(見圖2.5,采用的是負的)。另一個適用于Nyquist圖的慣例是正交性,它指的是x軸和y軸的視覺比例為1:1。注意這并不一定意味著坐標軸的數(shù)值尺度必須相同??紤]這一原則的一種簡單方法是當在標準正交圖上圍繞兩個軸上的相同值繪制線條時,它總是會形成一個完好正方形(例如連接點(0,0),(0,100),(100,100)和(100,0),它將是一個完好正方形)。
Nyquist圖是顯示阻抗數(shù)據(jù)常用的形式,其次是bode圖。與不繪制頻率值的Nyquist圖相比,bode圖可以很容易地確定頻率值。通常Nyquist圖上最左下角的點對應(yīng)于最高頻率,并沿著向右的軌跡從高頻移動到低頻。電化學(xué)阻抗譜實驗共得到5列數(shù)據(jù): 、、、和。
3 應(yīng)用介紹
3.1電路模型Modeling
電化學(xué)阻抗譜可用于提取復(fù)雜電化學(xué)系統(tǒng)的有用信息。電化學(xué)系統(tǒng)的不同部分可以用已知的電路元件來建模,其中阻抗是很好的表征。下面是已知電路元件的表(表3.1)以及描述它們各自阻抗的方程。
注意,我們使用來表示虛數(shù)。有些教科書可能會使用而不是,但因為通常指的是電化學(xué)系統(tǒng)中的電流,所以我們將使用。
為了理解如何對電化學(xué)系統(tǒng)進行建模,讓我們考慮一個3電極的配置,其中導(dǎo)電工作電極浸入具有氧化還原活性分子作為分析物的水電解質(zhì)中(圖3.1)。雖然沒有在圖3.1中顯示,但系統(tǒng)中隱含了一個對(輔助)電極來保持電荷平衡,一個參比電極作為電位的參考點。工作電極、對電極和參考電極都連接到一個恒電位器(電化學(xué)工作站)上。要了解更多關(guān)于電位器在這種配置下如何工作的信息,請查看我們的知識庫文章。
在電化學(xué)系統(tǒng)中,恒電位器對工作電極施加相對于參比電極的正偏置電壓或電流。來自工作電極的正電荷將帶負電荷的陰離子吸引到工作電極表面。陰離子被溶劑分子溶劑化,當陰離子到達電極表面時,陰離子周圍的溶劑分子與電極表面接觸。這在電極表面形成了一種類似電容器。電容器由介電材料隔開的兩個帶相反電荷的極板組成。在我們的電化學(xué)系統(tǒng)中電極表面的正電荷是一塊板,溶劑分子形成電介質(zhì),帶負電荷的陰離子形成另一塊板。這被稱為電化學(xué)雙電層。電化學(xué)系統(tǒng)還包括在電極表面周圍擴散的分析物分子。如果我們在工作電極上施加足夠的正電位,我們可以誘導(dǎo)電子從分析物轉(zhuǎn)移(氧化)到電極表面。回想一下第1節(jié)中的歐姆定律(公式1.1),其中電阻也可以被認為是驅(qū)動電流通過電路所需的電位的度量。與歐姆定律類似電子轉(zhuǎn)移過程可以在分析物和電極之間建模為電阻器。最后在電極表面之外是放置對電極和參比電極的溶液。電解質(zhì)溶液不是電荷的完好的導(dǎo)體,因此電極之間也存在溶液電阻,可以將其建模為另一個單獨的電阻。
在這一點上,我們可以構(gòu)建一個簡單的電路來描述電化學(xué)系統(tǒng)。該電路通常用于電路建模,稱為Randles電路(圖3.2)。
3.2電路模型求解
隨著我們對阻抗在高頻和低頻下的行為的理解,可以在查看Nyquist圖(圖3.5)時分配和的值。
3.3電化學(xué)阻抗作用(直流伏安法vs交流伏安法)
有了對電化學(xué)阻抗譜的基本了解:該技術(shù)是如何工作的,數(shù)據(jù)是如何呈現(xiàn)的,并從一個簡單的電化學(xué)系統(tǒng)中分析EIS數(shù)據(jù),那么問題就出現(xiàn)了:與用直流伏安法可以測定電化學(xué)系統(tǒng)中的雙層電容和溶液電阻相比為什么要使用EIS?
電化學(xué)阻抗譜的強大之處在于它能夠探測不同時間尺度上的電化學(xué)過程。與直流伏安法相比,這是交流伏安法的完好之處。EIS能夠探測可能在同一時間但在不同時間尺度上發(fā)生的電化學(xué)過程。例如電化學(xué)雙層的充電通常發(fā)生在微秒的時間尺度上,而擴散通常發(fā)生在幾百毫秒的時間尺度上。在直流伏安法實驗中這兩個過程同時發(fā)生,它們都對測量的總電流有貢獻。然而在直流伏安實驗中,從這兩個過程中反卷積電流響應(yīng)可能是困難的。相比之下EIS可以在每個過程的時間尺度上應(yīng)用不同頻率。
Randels(蘭德爾斯電路)由一個電阻和一個并聯(lián)電容器組成,該電路有時以其RC時間常數(shù)為特征。RC時間常數(shù)描述電容器充電至其最大值的~63.2%所需的時間,或放電至其最大值的~36.8%所需的時間。根據(jù)電阻器和電容器的值,電容器充電可能需要很長或很短的時間。電化學(xué)過程可以用類似的方式來考慮。每個電化學(xué)界面,無論是固體/液體界面還是固體/固體界面,都可以用Randels或RC電路進行電化學(xué)建模。如果每個界面的時間常數(shù)相差足夠大,則可以使用EIS對其進行檢測和測量。在直流伏安實驗中如果存在多個電化學(xué)界面將非常難以區(qū)分。話雖如此但EIS無法輕松區(qū)分具有相似值的兩個電化學(xué)過程。
本文中的Randles電路示例是電化學(xué)系統(tǒng)中簡單的電路模型之一。更復(fù)雜的系統(tǒng)需要更復(fù)雜的電路模型。求解這樣的電路模型通常需要先進的電路擬合軟件,而電路模型的擬合提供了電化學(xué)系統(tǒng)的定量信息。Pine Research Instrumentation提供這樣的軟件,
我們鼓勵您下載并使用設(shè)備的電路擬合工具來分析您的EIS數(shù)據(jù)。
電化學(xué)阻抗譜是一門復(fù)雜的電分析化學(xué)技術(shù)。本文是對該技術(shù)的介紹。還有電化學(xué)阻抗譜的許多其他方面,在這篇文章中沒有涉及;然而,在我們網(wǎng)站上的其他知識庫文章中討論了一些問題。
4 相關(guān)視頻
請訪問 Pine Research YouTube page
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責(zé),不承擔此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。