浮游植物熒光儀Phyto-PAM款可自動對浮游植物分類的熒光儀
schreiber教授因發(fā)明pam系列調(diào)制葉綠素?zé)晒鈨x而獲得首屆光合作用協(xié)會(ispr)創(chuàng)新獎
1983年,walz公司*科學(xué)家、德國烏茲堡大學(xué)的ulrich schreiber教授設(shè)計制造了**臺調(diào)制熒光儀——pam-101/102/103,并在植物生理、生態(tài)、農(nóng)學(xué)、林學(xué)、水生生物學(xué)等領(lǐng)域得到廣泛應(yīng)用,出版了大量高水平研究文獻。但該儀器由于采用光電二極管為檢測器,因此只能檢測高等植物、室內(nèi)培養(yǎng)的微藻等葉綠素含量較高(> 10 mg l-1)的樣品。
在pam-101/102/103出現(xiàn)的同時,schreiber教授就有了設(shè)計一臺多波長調(diào)制熒光儀的構(gòu)想。1988年,schreiber教授和他的博士后kolbowski博士*次設(shè)計出了16波長(led)熒光分光光度計。
1995年,schreiber教授和kolbowski博士一起設(shè)計出了**臺可對浮游植物自動分類的調(diào)制葉綠素?zé)晒鈨xphyto-pam。phyto-pam采用調(diào)制技術(shù),利用4種不要波長的led作為光源,利用光電倍增管作為檢測器,可以對水樣中的藍藻、綠藻、硅藻/甲藻自動分類,并分別測量它們的葉綠素含量和光合活性。
phyto-pam由于采用光電倍增管作為檢測器,因此檢測限達到 0.1
μg l-1 chl。根據(jù)研究對象和研究目的不同,可有3套系統(tǒng)供您選擇。
phyto-pam是水域生態(tài)學(xué)、海洋與湖沼學(xué)、水質(zhì)監(jiān)測等領(lǐng)域的有效工具。
系統(tǒng)描述:
脈沖-振幅-調(diào)制(pulse-amplitude-modulation, pam)技術(shù)的測量原理是基于對調(diào)制測量光激發(fā)的熒光信號的選擇性放大。在phyto-pam浮游植物熒光儀中,微秒級的測量光脈沖是由4種不同顏色的發(fā)光二極管(led)陣列發(fā)出的:藍色(470 nm)、綠色(520 nm)、淺紅色(645 nm)和深紅色(665 nm)。不同顏色的測量光脈沖在高頻率下交替應(yīng)用,就可以獲得4種波長的光激發(fā)出的半同步的熒光信號。結(jié)合不同藻類的參考光譜(reference spectrum)就可區(qū)分不同藻類,并分別測量它們的光合活性和葉綠素含量。
phyto-pam可以對藍藻、綠藻和硅/甲藻進行分類。由于硅藻和甲藻的色素組成差別不大,目前技術(shù)上還很難對它們進行區(qū)分。要想對它們區(qū)分,除了考慮色素組成外,更重要的是考慮捕光色素-蛋白復(fù)合體的結(jié)構(gòu)特別是橫向截面積,這必須結(jié)合“泵”和“探針”法測量熒光。目前walz公司正結(jié)合“泵”和“探針”法開發(fā)對微藻分類更多、更精確的儀器。phyto-pam還可以測量這些藻類的葉綠素濃度(檢測限為0.1
μg l-1 chl)。phyto-pam更加強大的功能是可以探測自然水樣中藍藻、綠藻和硅/甲藻的光合活性和光適應(yīng)狀態(tài)。
phyto-pam采用微型光電倍增管作為檢測器,可以檢測及其微弱的靈敏變化,同時還具備強光自動關(guān)閉的保護功能,因此儀器操作和維護更加容易。
特點:
1) 可對浮游植物自動分類的調(diào)制葉綠素?zé)晒鈨x
2) 4波長光源:470、520、645和665 nm
3) 對藍藻、綠藻和硅/甲藻進行分類
4) 可選配室內(nèi)系統(tǒng)(i)、野外系統(tǒng)(ii)和測附著藻類/大型藻類的系統(tǒng)(iii)
5) 靈敏度高,檢測限為0.1μg l-1 chl
6) 專業(yè)phytowin操作軟件,數(shù)據(jù)收集、分析和存貯功能強大
7)用戶可利用培養(yǎng)的微藻做參考光譜,非“黑匣子”
8)可在野外測量后根據(jù)水體藻類組成利用優(yōu)勢種(一種或多種)的參考光譜校對實驗結(jié)果
功能:
1) 可對藍藻、綠藻和硅/甲藻自動分類(定性)
2) 可自動測量水樣中藍藻、綠藻和硅/甲藻的葉綠素含量(定量)和總?cè)~綠素含量
3) 可同時測量水樣中藍藻、綠藻和硅/甲藻的光合作用和總光合活性
4) 可測量光合作用的量子產(chǎn)量和相對電子傳遞速率
5) 可自動記錄量子產(chǎn)量和相對電子傳遞速率的快速光響應(yīng)曲線
6) 用戶可做自己的參考光譜
7) 可連接記錄儀或示波器記錄原始熒光誘導(dǎo)動力學(xué)曲線
應(yīng)用領(lǐng)域:
浮游植物熒光儀Phyto-PAM 多用于水生生物學(xué)、水域生態(tài)學(xué)、海洋學(xué)、湖沼學(xué)、水質(zhì)監(jiān)測和預(yù)警、微藻生理學(xué)、微藻抗逆性、環(huán)境科學(xué)、生態(tài)毒理學(xué)、極地藻類(冰藻)研究等領(lǐng)域,對于了解自然水體中藻類種群的動態(tài)變化、水華/赤潮預(yù)警、野外水體中光合作用的時空變化、校正初級生產(chǎn)力的計算等有較大幫助。
系統(tǒng)組成:
phyto-pam的主機連接不同的檢測器可以組成3套不同的測量系統(tǒng):
系統(tǒng)i
實驗室版本,利用光學(xué)單元ed-101us/mp和標(biāo)準(zhǔn)10×10 mm樣品杯檢測熒光
系統(tǒng)i的所有光電元件均需安裝在鐵架臺上,適合實驗室用。但由于主機phyto-c內(nèi)置大容量電池,因此它也可以在野外或在船上使用。系統(tǒng)i的一個突出優(yōu)點是光學(xué)單元ed-101us/mp的開放式設(shè)計,它允許安裝不同的濾光片或不同顏色的光化光led陣列。與系統(tǒng)ii的phto-ed相比,10×10 mm樣品杯中的光場分布更加均勻。同時,系統(tǒng)i還可以連接溫度控制器us-t和微型磁力攪拌器phyto-ms。這些特點決定了系統(tǒng)i更加適合浮游植物光合作用的基礎(chǔ)研究。
系統(tǒng)ii
野外便攜式版本,利用phyto-ed和直徑15 mm的樣品杯檢測熒光
在系統(tǒng)ii中,所有光電元件都整合在便攜式的激發(fā)-檢測單元phyto-ed中。phyto-ed密封防水。系統(tǒng)ii在野外或在船上工作,當(dāng)然室內(nèi)也*可以使用。
系統(tǒng)iii
光纖型版本,利用phyto-edf檢測附著藻類或大型藻類的熒光
系統(tǒng)iii的光纖型激發(fā)-檢測單元phyto-edf可以檢測所有生長在表面的光合生物的光合作用。比較適合的測試材料包括附著藻類、底棲藻類、藻墊(microbial mats)和大型藻類等。由于采用光纖傳導(dǎo)信號而且測量面積小,因此靈敏度比系統(tǒng)i和ii要低。但是由于附著藻類等材料的葉綠素含量遠遠高于水體中的浮游植物,因此系統(tǒng)iii的靈敏度*可滿足實驗要求。
● 基礎(chǔ)配置 ○ 可選配置 | 系統(tǒng)i (實驗室版) | 系統(tǒng)ii (野外版) | 系統(tǒng)iii (光纖版) |
主機phyto-c | ● | ● | ● |
測量光led陣列phyto-ml | ● | | |
光化光led陣列phyto-al | ● | | |
光電倍增管pm-101p | ● | | |
光學(xué)單元ed-101us/mp | ● | | |
工作臺st-101 | ● | | |
激發(fā)-檢測單元phyto-ed | | ● | |
光纖型激發(fā)-檢測單元phyto-edf | | | ● |
微型磁力攪拌器phyto-ms | ○ | | |
球狀微型光量子探頭us-sqs | ○ | ○ | ○ |
溫度控制器us-t | ○ | | |
攪拌器water-s | | ○ | |
浮游植物熒光儀Phyto-PAM 技術(shù)參數(shù):
測量光:波長470、520、645和665 nm的測量光led。
光化光:波長655 nm的led;光化光強度0~2000 μmol m-2 s-1 par(系統(tǒng)i和ii)或0~1300 μmol m-2 s-1 par(系統(tǒng)iii)。
飽和脈沖:波長655 nm的led;飽和脈沖強度4000 μmol m-2 s-1 par(系統(tǒng)i和ii)或2600 μmol m-2 s-1 par(系統(tǒng)iii)。
信號檢測:光電倍增管,帶短波截止濾光片(λ>710 nm);選擇性鎖相放大器。
測量參數(shù):ft, f(或fo), fm(或 fm’), δf, y(δf/ fm’或fv/fm), etr和chl濃度等。
環(huán)境溫度:-5~+45 ℃,已在極地成功應(yīng)用。
部分文獻
[1] howeth jg, leibold ma. planktonic dispersal dampens temporal trophic cascades in pond metacommunities. ecology letters 2008;11 (3):245-57.
[2] ingleton t, kobayashi t, sanderson b, patra r, macinnis-ng cmo, hindmarsh b, bowling lc. investigations of the temporal variation of cyanobacterial and other phytoplanktonic cells at the offtake of a large reservoir, and their survival following passage through it. hydrobiologia 2008;603 (1):221-40.
[3] schmitt-jansen m, altenburger r. community-level microalgal toxicity assessment by multiwavelength-excitation pam fluorometry aquatic toxicology 2008;86 (1):49-58.
[4] wang g, chen k, chen l, hu c, zhang d, liu y. the involvement of the antioxidant system in protection of desert cyanobacterium nostoc sp. against uv-b radiation and the effects of exogenous antioxidants ecotoxicology and environmental safety 2008;69 (1):150-7.
[5] zhang m, kong fx, wu x, xing p. different photochemical responses of phytoplankters from the large shallow taihu lake of subtropical china in relation to light and mixing. hydrobiologia 2008;603 (1):267-78.
[6] 康麗娟, 潘曉潔, 常鋒毅, 李敦, 沈銀武, 劉永定. hco3-堿度增加對銅綠微囊藻光合活性和超微結(jié)構(gòu)的影響. 武漢植物學(xué)研究 2008;26 (1):70-5.
[7] alsterberg c, sundbäck k, larson f. direct and indirect effects of an antifouling biocide on benthic microalgae and meiofauna journal of experimental marine biology and ecology 2007;351 (1-2):56-72.
[8] dimier c, corato f, saviello g, brunet c. photophysiological properties of the marine picoeukaryote picochlorum rcc237 (trebouxiophyceae, chlorophyta). journal of phycology 2007;43 (2):275-83.
[9] dimier c, corato f, tramontano f, brunet c. photoprotection and xanthophyll-cycle activity in three marine diatoms. journal of phycology 2007;43 (5):937-47.
[10] domis lnds, mooij wm, huisman j. climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. hydrobiologia 2007;584:403-13.
[11] kim mk, park jw, park cs, kim sj, jeune kh, chang mu, acreman j. enhanced production of scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. bioresource technology 2007;98 (11):2220-8.
[12] schmitt-jansen m, altenburger r. the use of pulse-amplitude modulated (pam) fluorescence-based methods to evaluate effects of herbicides in microalgal systems of different complexity toxicological and environmental chemistry 2007;89 (4):665-81.
[13] tang d, shi s, li d, hu c, liu y. physiological and biochemical responses of scytonema javanicum (cyanobacterium) to salt stress journal of arid environments 2007;71 (3):312-20.
[14] xing w, huang w-m, li d-h, liu y-d. effects of iron on growth, pigment content, photosystem ii efficiency, and siderophores production of microcystis aeruginosa and microcystis wesenbergii current microbiology 2007;55:94-8.
[15] zhang m, kong f, xing p, tan x. effects of interspecific interactions between microcystis aeruginosa and chlorella pyrenoidosa on their growth and physiology. international review of hydrobiology 2007;92 (3):281-90.
[16] 張曼, 曾波. phytopam浮游植物分析儀用于微藻光合作用研究中幾種參數(shù)設(shè)定的優(yōu)化. 植物生理學(xué)通訊 2007;43 (1):148-52.
[17] ban a, aikawa s, hattori h, sasaki h, sampei m, kudoh s, fukuchi m, satoh k, kashino y. comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting franklin bay, the canadian arctic, with those in mesophilic diatoms during cases 03-04. polar biosciences 2006;19:11-28.
[18] bontes bm, pel r, ibelings bw, boschker hts, middelburg jj, donk ev. the effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow lake. biogeosciences 2006;3:69-83.
[19] liang y, beardall j, heraud p. changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of phaeodactylum tricornutum and chaetoceros muelleri (bacillariophyceae). botanica marina 2006;49 (2):165-73.
[20] lürling m, geest gv, scheffer m. importance of nutrient competition and allelopathic effects in suppression of the green alga scenedesmus obliquus by the macrophytes chara, elodea and myriophyllum hydrobiologia 2006;556 (1):209-20.
[21] mulderij g, smolders ajp, van donk e. allelopathic effect of the aquatic macrophyte, stratiotes aloides, on natural phytoplankton. freshwater biology 2006;51 (3):554-61.
[22] quigg a, kevekordes k, raven ja, beardall j. limitations on microalgal growth at very low photon fluence rates: the role of energy slippage photosynthesis research 2006;88 (3):299-310.
[23] roessink i, belgers jdm, crum sjh, van den brink pj, brock tcm. impact of triphenyltin acetate in microcosms simulating floodplain lakes. ii. comparison of species sensitivity distributions between laboratory and semi-field. ecotoxicology and environmental safety 2006:in press.
[24] bontes bm, pel r, ibelings bw, boschker hts, middelburg jj, donk ev. the effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow turf lake. biogeosciences discussions 2005;2:997-1031.
[25] casotti r, mazza s, brunet c, vantrepotte v, ianora a, miralto a. growth inhibition and toxicity of the diatom aldehyde 2-trans, 4-trans-decadienal on thalassiosira weissflogii (bacillariophyceae). journal of phycology 2005;41 (1):7-20.
[26] fietz s, bleiß w, hepperle d, koppitz h, krienitz l, nicklisch a. first record of nannochloropsis limnetica (eustigmatophyceae) in the autotrophic picoplankton from lake baikal. journal of phycology 2005;41 (4):780-90.
[27] heraud p, roberts s, shelly k, beardall j. interations between uv-b exposure and phosphorus nutrition. ii. effects on rates of damage and repair. journal of phycology 2005;41 (6):1212-8.
[28] jakob t, schreiber u, kirchesch v, langner u, wilhelm c. estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation pam chlorophyll fluorometry: performance and methodological limits. photosynthesis research 2005;83:343–61.
[29] shelly k, roberts s, heraud p, beardall j. interactions between uv-b exposure and phosphorus nutrition. i. effects on growth, phosphate uptake, and chlorophyll fluorescence. journal of phycology 2005;41 (6):1204-11.
[30] van der grinten e, janssen aphm, mutsert kd, barranguet c, admiraal w. temperature- and light-dependent performance of the cyanobacterium leptolyngbya foveolarum and the diatom nitzschia perminuta in mixed biofilms. hydrobiologia 2005;548 (1):267-78.
[31] wang g, chen l, li g, li d, hu c, chen h, liu y, song l. improving photosynthesis of microalgae by changing the ratio of light-harvesting pigments. chinese science bulletin 2005;50 (15):1622-6.
[32] hu z-q, liu y-d, li d-h. physiological and biochemical analyses of microcystin-rr toxicity to the cyanobacterium synechococcus elongatus. environmental toxicology 2004;19 (6):571-7.
[33] van der grinten e, janssen m, simis sgh, barranguet c, admiraal w. phosphate regime structures species composition in cultured phototrophic biofilms. freshwater biology 2004;49:369-81.
[34] van der grinten e, simis s, barranguet c, admiraal w. dominance of diatoms over cyanobacterial species in nitrogen-limited biofilms archiv fuer hydrobiologie 2004;161 (1):98-111.
[35] verspagen jmh, snelder eofm, visser pm, huisman j, mur lr, ibelings bw. recruitment of benthic microcystis (cyanophyceae) to the water column: internal buoyancy changes or resuspension? journal of phycology 2004;40 (2):260-70.
[36] 李闊宇, 宋立榮, 萬能. 底泥中微囊藻復(fù)蘇和生長特性的研究. 水生生物學(xué)報 2004;28 (2):113-8.
[37] lurling m. daphnia growth on microcystin-producing and microcystin-free microcystis aeruginosa
in different mixtures with the green alga scenedesmus obliquus. limnology and oceanography 2003;48 (6):2214-20.
[38] lürling m, verschoor am. fo-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. hydrobiologia 2003;491:145-57.
[39] mulderij g, van donk e, roelofs2 gm. differential sensitivity of green algae to allelopathic substances from chara. hydrobiologia 2003;491:261-71.
[40] verschoor am, takken j, massieux b, vijverberg j. the limnotrons: a facility for experimental community and food web research. hydrobiologia 2003;491:357-77.
[41] young eb, beardall j. photosynthetic function in dunaliella tertiolecta (chlorophyta) during a nitrogen starvation and recovery cycle. journal of phycology 2003;39 (5):897-905.
[42] körner s, nicklisch a. allelopathic growth inhibition of se-lected phyplankton species by submerged macrophytes. journal of phycology 2002;38:862-71.
[43] schreiber u, gademann r, bird p, ralph pj, larkum awd, kühl m. apparent light requirement for activation of photosynthesis upon rehydration of desiccated beachrock microbial mats. journal of phycology 2002;38:125-34.
[44] nicklisch a, köhler j. estimatin of primary production with phyto-pam-fluorometry. ann. report inst. freshw. ecol. inland fish. berlin 2001;13:47-60.
[45] varotto c, pesaresi p, maiwald d, kurth j, salamini f, leister d. identification of photosynthetic mutants of arabidopsis by automatic screening for altered effective quantum yield of photosystem 2. photosynthetica 2000;38 (4):497-504.
[46] schreiber u. chlorophyll fluorescence: new instruments for special applications. in: garab g, editor. photosynthesis: mechanisms and effects. dordrecht: kluwer academic publishers, 1998.
[47] kolbowski j, schreiber u. computer-controlled phytoplankton analyzer based on 4-wavelengths pam chlorophyll fluorometer. in: mathis p, editor. photosynthesis: from light to biosphere. dordrecht: kluwer academic publishers, 1995. pp. 825-8.